2 resultados para Biological control

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pine wilt disease (PWD) is one of the most damaging events affecting conifer forests (in particular Pinus spp.), in the Far East (Japan, China and Korea), North America (USA and Canada) and, more recently, in the European Union (Portugal). In Japan it became catastrophic, damaging native pine species (Pinus thunbergii and P. densiflora), and becoming the main forest problem, forcing some areas to be totally replaced by other tree species. The pine wilt nematode (PWN) Bursaphelenchus xylophilus, endemic, with minor damage, to North America, was introduced in Japan in the early XX century and then spread to Asia (China and Korea) in the 1980s. In 1999 it was detected for the first time in Portugal, where, due to timely detection and immediate government action, it was initially (1999-2008) contained to a small area 30 km SE of Lisbon. In 2008, the PWN spread again to central Portugal, the entire country now being classified as “affected area”. Being an A1 quarantine pest, the EU acted to avoid further PWN spreading and to eradicate it, by actions including financial support for surveyes and eradication, annual inspections and research programs. Experience from control actions in Japan included aerial spraying of insecticides to control the insect vector (the Cerambycid beetle Monochamus alternatus), injection of nematicides to the trunk of infected trees, slashing and burning of large areas out of control, beetle traps, biological control and tree breeding programs. These actions allowed some positive results, but also unsuccessful cases due to the PWN spread and virulence. Other Asian countries also followed similar strategies, but the nematode is still spreading in many regions. In Portugal, despite lower damage than Asia, PWD is still significant with high losses to the forestry industry. New ways of containing PWD include preventing movement of contaminated wood, cutting symptomatic trees and monitoring. Despite a national and EU legislative body, no successful strategy to control and eventually eradicate the nematode and the disease will prevail without sound scientific studies regarding the nematode and vector(s) bioecology and genetics, the ecology and ecophysiology of the pine tree species, P. pinaster and P. pinea , as well as the genomics and proteomics of pathogenicity (resistance/ susceptibility).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O fungo Pochonia chlamydospoia é um potencial agente de controlo biológico dos nemátodes-das-galhas-radiculares. Com este trabalho, pretendeu-se avaliar a eficácia de inoculações de clamidósporos no solo, no estabelecimento de uma população do fungo no solo e na raiz de tomateiro em estufa com níveis de densidade iguais ou superiores aos considerados como necessários para um eficaz controlo dos nematodes-das-galhas-radiculares. Ao longo de dois anos de ensaio, fórum efetuadas inoculações do isolado PcMR e avaliada a densidade de fungo no solo e na raiz, As inoculações efetuadas permitiram estabelecer uma população de P. chlamydosporia no solo e atingir os valores de densidade pretendidos. No entanto, os valores pretendidos para colonização da raiz pelo fungo foram atingidos apenas no primeiro ano. Foi igualmente demonstrada a capacidade do fungo em se manter no solo durante longos períodos de tempo mesmo na ausência de cultura e em condições adversas de humidade e temperatura. /ABSTRACT: Pochonia chlamydosporia is a potential root-knot nematode biological control agent. The aim of this work was to evaluate the effectiveness of chlamydospore inoculations at the soil, for the establishment at both soil and greenhouse tomato root, of a fungus population in density levels equal or superior to those considered as needed for an effective control of root-knot nematode. Along two years, several inoculations using the Portuguese isolate PcMR were made and the density of fungus at the soil and roots studied. These inoculations allowed the establishment of a population of P. chlamydosporia at the soil and achieve the desired density values. However, only in the first year of assay, the desired values of root colonization by fungus were achieved. lt was also demonstrated that P. chlamydosporia can survive for itself at the soil for a long period of time even in the absence of plant culture and in adverse moist and temperature conditions.